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Abstract

Visualizing NLP annotation is useful for
the collection of training data for the sta-
tistical NLP approaches. Existing toolk-
its either provide limited visual aid, or in-
troduce comprehensive operators to real-
ize sophisticated linguistic rules. Work-
ers must be well trained to use them.
Their audience thus can hardly be scaled
to large amounts of non-expert crowd-
sourced workers. In this paper, we present
CROWDANNO, a visualization toolkit to
allow crowd-sourced workers to annotate
two general categories of NLP problems:
clustering and parsing. Workers can fin-
ish the tasks with simplified operators in
an interactive interface, and fix errors con-
veniently. User studies show our toolkit
is very friendly to NLP non-experts, and
allow them to produce high quality labels
for several sophisticated problems. We re-
lease our source code and toolkit to spur
future research.

1 Introduction

Statistical machine learning approaches has made
great successes in research disciplines such as
parsing (Klein and Manning, 2003), information
extractions (Banko et al., 2007), question answer-
ing (Kwok et al., 2001). Yet off-the-shelf mod-
els learned from training data of one particular
domain (usually newswire) would often underper-
form at present tasks, whose data could come from
other domains such as social media (?). To fully
exploit the power of statistical approaches, it is
useful to quickly collect plentiful in-domain train-
ing data in a short period of time.

With the advent of crowd-sourcing platforms
(e.g. Amazon Mechanical Turk1 and Odesk 2), it

1http://www.mturk.com
2http://www.odesk.com

becomes realistic to quickly hire a large group of
crowd-sourced workers with a fair amount of cost.
For example, there are over 500,000 workers in
AMT and in average, they are more educated than
the United States population. But when the NLP
data is annotated by unevenly-trained non-expert
workers, errors are rampant (?). We believe they
happen for at least three reasons: (1) sophisticated
linguistic practices, for example, the guidelines for
penn treebank are more than 300 pages (?). It
is impossible for non-experts to catch all the de-
tails; (2) comprehensive operators caused by so-
phisticated rules, for example, to generate a parsed
tree, annotators must identify the POS of each tree
node from a set of hundreds tags; (3) many NLP
problems are structured prediction problem, when
the labels depend on each other, each decision re-
quires deep lookahead and backtracking.

Therefore, it is not surprising that the outputs
of the crowd-sourced workers are far from ora-
cles. During annotations, they are having lim-
ited NLP knowledge, are blind about the depen-
dencies of the data, but having excessive amount
of options to choose. To alleviate the problem,
we believe a good visualization toolkit for crowd-
sourced workers could dramatically increase their
productivity and accuracy. Unfortunately, existing
toolkits either provide limited visual aid, or intro-
duce comprehensive operators to realize sophisti-
cated linguistic practices and restrict their pool of
workers. Instead of anticipating the workers to be
NLP experts, we aim to allow ordinary people to
annotate the training corpus. For this, the toolkit
is designed with several principles in mind: (1)
simplified operators: comprehensive operators for
crowd workers often mean longer education time
and lower accuracy. We thus only allow users to
click and draw over the data. The tradeoff between
expressiveness and quantity is worthwhile because
we can hire crowd-sourced workers to generate
more training data with less errors. (2) interactive
interface for deep lookahead and backtracking,



workers should efficiently read the dependency of
the data in some interactive way; (3) convenient
trial and error, for structured prediction, labels are
related to each other while human beings have to
annotate them in some serialized manner. So it is
inevitable that workers would frequently fix their
errors; (4) generalization, many toolkits only spe-
cialize on one problem because they must provide
comprehensive and specialized operators. As op-
pose to them, our toolkit with simplified operators
is consequently easier to cover a broader range of
NLP tasks.

In this paper, we present CROWDANNO, a vi-
sualization toolkit for crowd-sourced NLP anno-
tation. The key observation is that many NLP
problems turn out to be clustering and parsing.
On one hand, NLP system is often asked to iden-
tify the relationship between objects, which could
be words (e.g. paraphrasing), mentions (e.g. co-
reference), sentences (e.g. summarization), doc-
uments (e.g. sentiment analysis), etc. All these
tasks could be treated as some practice of clus-
tering. On the other hand, many NLP applica-
tions rely on the results of parsing. For exam-
ple, relation extraction (Hoffmann et al., 2011) ap-
proaches use the dependency features generated
from the parsed trees; some syntax-based trans-
lation method (?) translate between trees of dif-
ferent languages. CROWDANNO allows crowd-
sourced workers to generate the clustering graphs
and the parsing trees. They can annotate the train-
ing data with simplified operators to avoid tedious
education; they can backtrack their labels in an
interactive interface to better read the data; they
can easily edit their previous actions to quickly fix
the errors. User studies show our toolkit is very
friendly to NLP non-experts, and allow them to
produce high quality labels for several sophisti-
cated problems.

The rest of this paper is organized as follows.
In Section 2 we demonstrate the overview of our
toolkit. Section 3 and 4 presents the implemen-
tations for clustering and parsing annotation re-
spectively. In Section 5 we introduce the evalu-
ation metrics, and present the experimental results
of our toolkit with respect to several baselines.
In section 6 we discuss the related work of our
toolkit. Finally we conclude our work and present
the discussion.

Figure 1: Workflow of the toolkit: annotation
gatherers generate the html pages to display the
task; our toolkit take the html pages as the in-
put and visualize the interactions; crowd-sourced
workers see the integrated interface and generate
the outputs.

2 Toolkit Overview

In this section, we first introduce the design deci-
sions and the overview of the toolkits. Then we
present the user interface and the major functions.

The toolkit is designed and implemented as a
web application, since it is easiest for crowd work-
ers to visit.

The users of our visualization toolkit include
annotation gatherers and crowd-source workers.
In general, annotation gatherers (NLP experts and
well-trained programmers) use our toolkit to col-
lect training data from crowd-source workers for
their NLP systems. We believe annotation gather-
ers know their NLP problems better than anyone
else, so we leave them to implement a html page
to display their problem. The html page would call
the APIs to pass data (e.g. objects to cluster) to the
toolkits. The core component then is to visualize
the problem, as well as allowing workers to inter-
act with the objects. Our toolkit keeps the task-
visualization transparent to maximize the flexibil-
ity of our toolkit. Figure 1 shows the workflow of
our toolkit.

2.1 Cluster Labeling
We use co-reference as the running example for
clustering visualization. Figure 2 shows the user
interface. The left sides (about 40%) displays the
NLP task. One simple way to display the co-
reference task, as shown in the figure, is to high-
light the mentions and to give them unique IDs.
The right side of the interface is for the interaction
purpose, where workers generate the clusters in-
teractively. Each token has a corresponding node
in the operation area. To bridge the connection
between the text display and graphic chart, we la-
bel each token and its corresponding node with the
same index.



Figure 2: Interface of clustering: the left side displays the NLP task, which takes the input from annotator
gatherer; the right side is the interaction area, where workers

Our main manipulation method for clustering
two nodes together is dragging nodes and merg-
ing into one group. It is the most intuitive opera-
tion for one without any instructions to merge two
nodes. We will explain the select and drag, link
add and remove, and color scheme in the follow-
ing paragraphs.

SELECT AND DRAG
Since we have two separate parts, one for display-
ing the text, the other for cluster and group ma-
nipulation, a proper selection must be supported
in order to reduce user’s eye movement between
two parts. We adopt three mechanism to address
this issue. First, if user click on one token, the cor-
responding node will be highlighted in red color.
Similarly when user starts to drag a node, the to-
ken is also highlighted in red background. Second,
to accelerate tracing from node to the actual text,
once user start to drag a node, the display section
will scroll to a proper position to let user easily
read the context of this token. Third, as shown in
Figure 3, when drag event starts, an abbreviation
text will be displayed under each node so that user
can have a brief concept of what each node repre-
sents.

LINK ADD AND REMOVE
Our tool does not allow user explicitly add a link
between two nodes. Instead the way to add a link
is by dragging a node close enough to the targeted

Figure 3: Abbreviation text is displayed under
each node after dragging starts.

node. Figure 4 shows the process of adding a link.
When user starts to drag one node, a shadow cir-
cle will be shown around each node. This shadow
circle indicates the effective area of adding a link.
Once a node is close enough to this shadow cir-
cle, a temporary link (in red) will be immedi-
ately added to preview the result of this operation
(shown in Figure 4(b)). After user confirms the
operation by dropping down the node, a perma-
nent link will be added. Due to the transitivity
property of clustering task, CROWDANNO will au-
tomatically bundle two groups together and assign
same color for all the nodes in this new group.

The operation that removes a link is as easy as
clicking on the link, shown in Figure 5. When the
mouse hovers over the link, the link color turns
to red to indicate that the link will be removed



(a)! (b)! (c)!

Figure 4: (a) before adding the link; (b) in the mid-
dle of adding the link; (c) after adding the link.

(a)! (b)!

Figure 5: (a) in the middle of removing the link;
(b) after removing the link.

(Figure 5(a)). After the click, link will then be
removed. If the group is no longer connected af-
ter the removement of that link, the system will
find out two connected components and separate
the original group into two new groups, e.g., Fig-
ure 5(b).

COLOR SCHEME
The token and its corresponding node in the
graphic sides have the same color. Any change
in the color of the node is also reflected in the
corresponding token in the text display part (Fig-
ure 2). The consistency in color schemes improves
the connection between text and graph part.

The default color is grey. If a node (or token)
does not belong to any group, we will use the de-
fault color as filling color (or background color).
We will assign a new color when a group is gener-
ated. If two groups merge together, we will keep
the color of group being merged to as the color of
new merged larger group (Figure 4). If a group is
splited into two, the majority component keeps the
color the origin group.

GROUP POSITIONING
To improve the usability and precision of dragging
and adding link operations, and to utilize the space
effectively, a proper distance should exist between
nodes and nodes, and between groups and groups.
We use d3 Force model and calibrate the grav-
ity parameter to enforce a proper gap among the
nodes. CROWDANNO also calculate a proper cen-
tral point for each group, and impose a force to
every nodes inside this group towards that direc-

Figure 7: Add a new node to group a set of sub-
trees by selecting a set of paths.

tion. Therefore, groups won’t be overlapped in a
small region.

2.2 Tree Construction
The tree annotation task is to construct or edit a
tree hierarchy from a sentence. This task is very
common in many sentence based NLP problems
such as POS tagging.

INTERFACE
The tree annotation task interface consists of two
parts. We use syntactic parsing as the running ex-
ample to show how our toolkit can build a parsed
tree. Figure 6 shows the general user interface.

The left part is the sentence input data list. Our
tool supports multiple sentence annotation in the
same time. Users can select from a list of sentence
files at the bottom of the left panel. The sentence
files are in plain text format. Each sentence file is
simply a list of sentences, each of which is a line.
The words are separated by white space charac-
ters. The sentence list in a given input file will be
shown on the Input section. To the right of each
sentence, there is a small download sign, on which
a click triggers a download of the current tree built
for that sentence.

The right part is the tree editing/construction
area. A given input sentence will be splitted into
word nodes vertically. The reason that we organize
the sentence word nodes in this way instead of hor-
izontally is that each word now always occuppies
the same unit height. It’s more space consistent vi-
sually and also more efficient in space usage. Our
tool provides three operations for manipulating the
tree construction task.

NODE ADDITION (GROUPING)
Our tool provides a simple line-intersect operation
to group an existing set of sub-trees as in Figure 7.
A new node which serves as the root of all grouped
sub-trees is added as a result. To the best of our
knowledge, we are the first to propose this visual-
ization operation on tree structures.

NODE DELETION (UNGROUPING)
As the couter-operation of node addition, our tool



Figure 6: The before and after trees in the user interface when parsing the sentence “There is no asbestos
in our products now.”

Figure 8: Delete a node by selecting a single path.

Figure 9: Fold a node by clicking on the node.

also provides a node deletion operation also by
line intersect. If a single line is cut, our tool con-
siders it as a node deletion. The node at the child
side of the cut line will be deleted unless the node
is a leaf node. Figure 8 gives the illustration.

NODE FOLDING
The above two tree editing operations are enough
for building arbitray trees in most NLP tasks. In
addition to them, our tool also provides a node
folding operation. It is a change of view operation
rather than an editing operation. Given any non-
leaf node, a click on the node will folds the whole
sub tree and represented by a colored leaf node
with the all the words in the sub-tree displayed.
Figure 9 gives an illustration.

Since we are targeting sentence based tree bui-
liding tasks, the tree layout is designed that the

node order is always kept as the input order, which
is the sentence order, after any of the operations.

3 Evaluation

Our goal is to evaluate whether our visualization
toolkit is helpful for non-experts of NLP to anno-
tate clustering and parsing training data.

3.1 Setup

For clustering, we use co-reference as our running
example; for parsing, we ask workers to build syn-
tactic tree for sentences according to their English
skills. They don’t need to tag any of the nodes. We
designed the user studies as follows:
• Participants: We asked 6 graduate students

aged 21 to 26 years old to participant in our
user study. 3 are native English speakers, the
other 3 learned English as a second language.
None of them are NLP experts. We divide
them into native group and foreign group.
• Instructions: each participant is given two an-

swer examples one on parsing and one on clus-
tering. And given 5 minute to learn the exam-
ple and ask whatever question they have.
• Clustering: each of them are given 10 articles

for co-reference with 5 using our visualization
tool and 5 conducted using Excel in the tradi-
tional way (where they will cluster expressions
by putting them into the same row). The orders
of the articles and the tools are random.
• Parsing: each of them are given 10 sentences



for tree parsing with 5 using our visualization
tool and 5 using text editor to put parenthesis
in the traditional way. For example (My dog)
(also likes) (eating sausage).)

The order of the articles, the sentences and the
toolkit they use are randomly shuffled.

We compare the time efficiency and accuracy to
generate training data with and without the toolkit.
For clustering, time efficiency is defined as the
seconds worker used for each correct co-reference
cluster. Accuracy is computed by purity. Let Nij

be the number of mentions in cluster i that belong
to entity j, and let Nj =

∑
iNij . Then the pu-

rity of a cluster is pi = maxj pij . The overall
purity is

∑
i
Ni
N pi. Purity range between 0 (bad)

and 1 (good). Table 2 shows the average time, pu-
rity for 5 workers. It is clear that using our toolkit
dramatically improve the efficiency and accuracy.
Purity ranges between 0 (bad) and 1 (good). Ta-
ble 2 shows the average time, purity for 5 work-
ers. It is clear that using our toolkit dramatically
improve the efficiency and accuracy.

For parsing, time efficiency is defined as the
seconds worker used for each token, to compen-
sate the time cost over long sentences.

Our clustering tool achieved an average
1.0s/15.2% decrease in time consumption and at
the same time an average 6.6% increase of purity
on clustering result. Our tree parsing tool achieved
an average of 1.9s/27.8% decrease in time con-
sumption for parsing. We manually checked the
quality of these tree and find out that the qualities
with and without the toolkit is quite comparable.
It is reasonable because we provide workers text
edits with the function of parenthesis matching, so
people can easily figure out the errors of parenthe-
sis in the sentences. It shows that people are more
intolerable about the errors in parsing, even with
text editors. But it is clear that they spent much
more time on each tree. During crowd-sourcing,
time cost equals money spending. It shows that
our toolkit is still valuable.

4 Related Work

Many NLP tasks require large amount of high
quality training data. Manual annotation for such
training data is well-known for its tedium. To gen-
erate a comprehensive annotated training set re-
quires much human effort. Annotators are also
prone to make mistakes during the long and te-
dious annotating process. Researchers are trying
to address these problems by two means: 1) build-

ing specialized annotating tools to ease the anno-
tating process in the hope of improving efficiency
as well as reducing the error rates; 2) adopting
crowdsourcing to scale up annotating.

Specialized annotating tools. Facing one of
the biggest common problems, many NLP re-
searchers have developed a number of tools for an-
notating training corpora along the history of NLP
research. At first, before the blossom of the web,
tools are generally built as local programs such
as the WordFreak linguistic annotation tool (Mor-
ton and LaCivita, 2003) and the UAM CorpusTool
for text and image annotation (O’Donnell, 2008).
These tools are very restricted because they can-
not scale. Web-based annotation tools are devel-
oped later in order to scale up the annotating pro-
cess, such as (Stührenberg et al., 2007). However
these tools typically only use very basic HTML
based techniques to provide very limited visual
aids for the annotating process. Most related in
scope is (Yan and Webster, 2012) which provides a
collaborative tool to assist annotators in tagging of
complex Chinese and multilingual linguistic data.
It visualizes a tree model that represents the com-
plex relations across different linguistic elements
to reduce the learning curve. Besides it proposes
a web-based collaborative annotation approach to
meet the large amount of data. Their tool only fo-
cuses on a specific area that is complex multilin-
gual linguistic data, whereas our work is trying to
address how to generate a visualization model for
general data sets.

Crowdsoursing in NLP. Crowdsourcing
(Howe, 2006) is a popular and fast growing
research area. There have been a lot of studies on
understanging what it is and what it can do. For
instance, (Quinn and Bederson, 2009) categorizes
crowdsourcing into seven genres: Mechanized
Labor, Game with a Purpose (GWAP), Widom
of Crowds, Crowdsourcing, Dual-Purpose Work,
Grand Serarch, Human-based Genetic Algorithms
and Knowledge Collection from Volunteer Con-
tributors. Other works, such as (Abekawa et
al., 2010) and (Irvine and Klementiev, 2010),
develops a specific tool and verifies the feasibility
and benefit of crowdsourcing. It is generally con-
vinced that crowdsourcing is of great beneficial if
the tasks are easy to conduct by the workers and
the tasks are independent.

Because of the high labor requirements in typ-
ical NLP training tasks, there also have been
some work considering using crowdsoursing in



Participant W1 W2 W3 W4 W5 W6
time per entity(second) 7.8 6.2 6.6 9.4 10.3 11.0

Text Editor purity 0.82 0.76 0.88 0.61 0.78 0.82
time per entity(second) 5.6 4.5 6.0 9.5 8.8 9.1

Visual. Tool purity 0.89 0.86 0.91 0.72 0.87 0.83

Table 1: For clustering, comparing time, purity and rand index with and without the visualization toolkit

Participant W1 W2 W3 W4 W5 W6
Text Editor time per word (second) 7.8 5.9 6.7 4.7 6.6 8.9
Visual. Tool time per word (second) 4.3 4.8 4.4 3.7 5.4 6.7

Table 2: For parsing, compare time with and without the visualization toolkit

many NLP tasks. For example, Grady et al.
generated a data set on document relevance to
search queries for information retrieval (Grady
and Lease, 2010); Negri et al. built a cross-lingual
textual corpora (Negri et al., 2011); Finin et al.
collected simple named entity annotations using
Amazon MTurk and Crowd-Flower (Finin et al.,
2010). Also there are some researchers observed
the hardness of collecting high quality data and did
some studies on improving that, such as (Hsueh
et al., 2009)( how annotations should be selected
to maximize quality), and (Lease, 2011) (quality
control in crowdsoursing by machine learning).

Different from previous studies, we seek to im-
prove crowdsoursing annotating quality by greatly
lower the usability barrier through the proposed
visualized toolkit rather than trying to cleaning up
the data generated by the crowdsoursing process.

5 Conclusion and Future Work

In this paper, we present CROWDANNO, a toolkit
for crowd-sourced NLP annotation. We visualize
two important categories of NLP problems: clus-
tering and parsing. By providing simplified op-
erators and interactive interface, we allow crowd-
sourced workers to generate high quality training
data for NLP problem. In our evaluation, we let
non-expert student to test our toolkit. The results
are very promising. Because of the time limita-
tion, we have not yet let the crowd sourced work-
ers to really test our toolkit. In future, we would
deploy the toolkit on AMT to collect real training
data for NLP problems.
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